Switching autoregressive models
Application to wind time series

Pierre Ailliot

Joint work with Valérie Monbet and Françoise Pène

1 LMBA, UBO
2 IRMAR, Rennes 1
Stochastic weather generators?

- **Stochastic** tools for generating sequences of meteorological variables

Historical data
50 years of wind speed at Ouessant

Stochastic model
MS-AR model calibrated on historical data

Synthetic data
Large number of synthetic wind sequences with statistical properties similar to original data
- **Stochastic** tools for generating sequences of meteorological variables
- Used in impact studies when climate is involved and not enough data to estimate the quantities of interest

Synthetic weather conditions → **System** → **Distribution of the response**

- Most usual applications: hydrology and agriculture
 - Meteorological variables: rainfall, temperature, solar radiation, humidity, wind speed,...
- Why developing wind generators?
 - Renewable energy
 - Coastal erosion
 - ...

- In the first part of this talk, focus on wind speed at a single location
 - Ouessant, 50 years, $\Delta t = 6h$
 - Preprocessing step to remove seasonal components (+ trends, daily components)?
 - In this talk, data blocked by month, results for January (no significant daily component)
Classical approach for modeling time series

Simulation of the **stationary** time series \(\{ Y_t \} \) in three steps:

- **First step**: find a deterministic monotonic function \(g \) such that
 \[
 X_t = g(Y_t)
 \]
 has (approximately) Gaussian margins

 - "Normal score transformation": \(g = \Phi^{-1} \circ F_Y \)
 \(F_Y(y) = P[Y_t < y] \), \(\Phi \) cdf of \(\mathcal{N}(0, 1) \)
 - "Box-cox transformation": \(g(y) = \frac{y^\lambda - 1}{\lambda} \)

- **Second step**: \(\{ X_t \} \) is a stationary process with (approximately) Gaussian margins. Further assume that \(\{ X_t \} \) is a **Gaussian process** and simulate this process.
 - Exact simulation
 - ARMA models

- **Third step**: apply the inverse transform \(g^{-1} \) to the simulated Gaussian sequence
Transformed Gaussian processes

- Easy to implement
- Can be used for multivariate data (several sites and/or variables)
- May be hard to interpret
- Can not reproduce some non-linearities?
 - A stationary Gaussian process has a symmetric behavior below α and above $1 - \alpha$ quantile
 - The same holds true for transformed Gaussian processes (since g is monotonic)

- Observed storms have shorter durations than calm periods

Alternatives?
- More general transformation $X_t = g(Y_{h(t)})$ with g and h (stochastic?) transformations such that $\{X_t\}$ is a Gaussian process
- Non-linear time series models
Weather type models are widely used for meteorological variables

- Weather type = typical weather situation
 - e.g. dry/wet days, convective/frontal rainfall, cyclonic/anticyclonic conditions,...
 - Generally between 2 and 10 weather types are used; enough to summarize the climate

- Weather type models characterized by
 - A model for the weather type sequence
 - A model for the meteorological variables conditionally to the weather type

An example: the chain dependent model (Richardson, 1981)

- Weather type \(S_t = \{\text{Dry}, \text{Wet}\} \)
 - First order Markov chain with 2 states

- Rainfall amount \(R_t \) conditionally independent in time given the weather type sequence

- Temperature, solar radiation, wind speed \(Y_t \)
 - Residual correlation between successive observations modeled as an AR process with time varying coefficients
 \[
 Y_t = \beta_0^{(S_t)} + \beta_1^{(S_t)} Y_{t-1} + \sigma^{(S_t)} \epsilon_t
 \]
 - \((\beta_i^{(s)}), (\sigma^{(s)}) \) unknown parameters and \(\{\epsilon_t\} \) a Gaussian white noise

\[
\begin{align*}
\text{Rainfall} & \quad \cdots \quad R_{t-1} \quad R_t \quad R_{t+1} \quad \cdots \\
\uparrow \quad & \quad \uparrow \quad & \quad \uparrow \\
\text{Weather type} & \quad \cdots \quad \rightarrow S_{t-1} \quad \rightarrow S_t \quad \rightarrow S_{t+1} \quad \rightarrow \cdots \\
\downarrow \quad & \quad \downarrow \quad & \quad \downarrow \\
\text{Temperature, wind, ...} & \quad \cdots \quad \rightarrow Y_{t-1} \quad \rightarrow Y_t \quad \rightarrow Y_{t+1} \quad \rightarrow \cdots \\
\end{align*}
\]

- Wind dynamics modeled as a mixture of two AR(1) processes

- More sophisticated models for wind time series discussed in the sequel
Various strategies available for defining the weather type

- In Richardson’s model \(S_t = \{ Dry, Wet \} \)
 - Probably not the optimal clustering for describing wind conditions!
- Run clustering algorithm on meteorological variables (e.g. pressure fields,...)
- **Introduce the weather type as a latent (hidden) variable**
 - Estimation procedure will find the "optimal" weather type
 - Estimation procedure more complicated, simpler models are needed

Hidden weather type modeled as a first order Markov chain

Linear Gaussian AR(p) model for the wind speed conditionally to the weather type

\[
Y_t = \beta_0^{(S_t)} + \beta_1^{(S_t)} Y_{t-1} + \ldots + \beta_p^{(S_t)} Y_{t-p} + \sigma^{(S_t)} \epsilon_t
\]

\((\beta_i^{(s)}), (\sigma^{(s)})\) unknown parameters and \(\{\epsilon_t\}\) iid \(\mathcal{N}(0, 1)\) sequence

MS-AR: "Markov Switching AutoRegressive" model
A MS-AR model for the wind intensity

- Maximum likelihood estimates (MLE) can be computed with the EM algorithm
- The selected model is interpretable (results for January at Ouessant)

\[Y_t = \begin{cases}
1.46 + 0.79 Y_{t-1} + 1.37 \epsilon_t & (S_{t-1} = 1) \\
2.24 + 0.77 Y_{t-1} + 2.4 \epsilon_t & (S_{t-1} = 2)
\end{cases} \]

- **Regime 1**: lower intensity and temporal variability, anticyclonic conditions
- **Regime 2**: higher intensity and temporal variability, cyclonic conditions
- Transition matrix: \[
\begin{bmatrix}
0.98 & 0.02 \\
0.03 & 0.97
\end{bmatrix},
\text{stationary distribution } \begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}
\]
- Smoothing probabilities \(P[S_t|y_1, ..., y_T] \) for Jan. 2000
A MS-AR model for the wind intensity

- The model is able to reproduce some important statistical properties of the data

Marginal distribution (QQ plot)

CDF duration below 6 m/s

Autocorrelation function

CDF duration above 12 m/s
MS-AR models only partly reproduce the observed asymmetry in up-crossing rate
- Still too much variability at low level!

Transformed Gaussian process

MS-AR model

In MS-AR models the regime switchings are independent of past wind conditions
- The probability of staying in the anticyclonic regime at time \(t \) is higher if the wind speed is very low at time \(t - 1 \)?
- Adding this in the model could create more asymmetry?
A non-homogeneous MS-AR models for the wind intensity

Hidden Regime

\[\cdots \rightarrow S_{t-1} \rightarrow S_t \rightarrow S_{t+1} \rightarrow \cdots \]

Observed time series

\[\cdots \rightarrow Y_{t-1} \rightarrow Y_t \rightarrow Y_{t+1} \rightarrow \cdots \]

- Logistic link function for the switching probabilities. For \(s \in \{1, 2\} \),

\[
P(S_t = s | S_{t-1} = s, Y_{t-1} = y_{t-1}) = \pi_s + \frac{1 - \pi_+ - \pi_-}{1 + \exp \left(\lambda_0 + \lambda_1 y_{t-1} \right)}
\]

- Linear Gaussian AR(p) model for the wind speed conditionally to the weather type

\[
Y_t = \beta_0^{(s_t)} + \beta_1^{(s_t)} Y_{t-1} + \ldots \beta_p^{(s_t)} Y_{t-p} + \sigma^{(s_t)} \epsilon_t
\]

- \((\beta_i^{(s)})\), \((\sigma^{(s)})\) unknown parameters and \((\epsilon_t)\) iid sequence of \(\mathcal{N}(0, 1)\) r.v.
A non-homogeneous MS-AR models for the wind intensity

- Model fitted with the EM algorithm
- Similar interpretation for the regimes
 - **Regime 1**: lower intensity and temporal variability, anticyclonic conditions
 - **Regime 2**: higher intensity and temporal variability, cyclonic conditions
- Higher probability of staying in regime 1 if low wind speed
A non-homogeneous MS-AR models for the wind intensity

- Durations in the regimes are no more geometric (especially in the first regime)

- Create (a little) more asymmetry in the dynamics

Transformed Gaussian process

MS-AR model

NHMS-AR model

Ailliot

Switching autoregressive models
A non-homogeneous MS-AR models for the wind intensity

- Similar results for temperature time series in Brest with this model
 - Including non-homogeneous switchings permits a better description of long cold and warm periods
- The model has been generalized to handle
 - Multivariate time series
 - Applied to bivariate wind data \((u, v)\) components
 - Non linear autoregressive models
 - e.g. wind direction with von-Mises distribution
 - Other link functions

Ailliot
Switching autoregressive models
Another application: lynx data

- Annual number of lynx trapped in the Mackenzie River district (after log transfo.)

- Periodic fluctuations (competition between several species, predator-prey interaction, ...)
- Asymmetric cycles (increasing phase are slower than decreasing phase)
- Benchmark for non-linear time series
- SETAR(2) model proposed in Tong (90)

\[
Y_t = \begin{cases}
0.51 + 1.23 Y_{t-1} - 0.37 Y_{t-2} + 0.18 \epsilon_t & (Y_{t-2} \leq 3.15) \\
2.32 + 1.53 Y_{t-1} - 1.27 Y_{t-2} + 0.23 \epsilon_t & (Y_{t-2} > 3.15)
\end{cases}
\]

- First regime describes population increase
- The NHMS-AR model includes the SETAR(2) model as a limit case

\[
P(S_t = s | S_{t-1} = s, Y_{t-1} = y_{t-1}) = \pi(s) + \frac{1 - \pi_+^{(s)} - \pi_-^{(s)}}{1 + \exp \left(\lambda_0^{(s)} + \lambda_1^{(s)} y_{t-1} \right)}
\]
Another example: lynx data

- Fitted NHMS-AR and SETAR(2) models have similar estimates for the AR coefficients
- Transition probabilities

![Transition probability graphs for different AR models](image)

- SETAR(2) model: switchings occur when Y_{t-2} crosses level $u = 3.15$ (dashed vertical line)
- NHMS-AR model: switchings are no more a deterministic function of Y_{t-2}
 - Fuzzy extension of the NHMS-AR model
Another application: lynx data

The fitted model is able to generate cycles

Data

Simulated sequence
Consistency of MLEs proven for NHMS-AR models under general conditions

- Ergodicity of \(\{ S_t, Y_t \} \)
- Existence of moments for the stationary solution
- Identifiability

For the specific model considered previously

\[Y_t = \beta_0^{(S_t)} + \beta_1^{(S_t)} Y_{t-1} + \sigma^{(S_t)} \epsilon_t \]

- Identifiability constraint: \((\beta_0^{(1)}, \beta_1^{(1)}, \sigma^{(1)}) \neq (\beta_0^{(2)}, \beta_1^{(2)}, \sigma^{(2)})\)

\(S_t \in \{1, 2\} \) and

\[P(S_t = s | S_{t-1} = s, Y_{t-1} = y_{t-1}) = \pi(s) + \frac{1 - \pi_+ - \pi_-}{1 + \exp(\lambda_0(s) + \lambda_1(s) y_{t-1})} \]

- Identifiability constraint: \(\forall s \in \{1, 2\}, \pi_- = \pi_+ = \pi_0 \) where \(0 < \pi_0 < 1/2 \) is a fixed constant

Ergodicity and second order moments if \(\exists R > 0 \) such that \(\forall s_0 \in \{1, 2\}, y_0 \in \mathbb{R}^s \)

\[\|y_0\| > R \Rightarrow \sum_{s_1=1}^2 \rho_1, \theta(s_1 | s_0, y_0) |\beta_1^{(s_1)}|^2 < 1 \]

- Satisfied in particular if \(\forall s \in \{1, 2\}, |\beta_1^{(s)}| < 1 \) (the two regimes are stable)

Under the above assumptions,..., on a set of probability one, the limit values \(\theta \) of the sequence of random variables \((\hat{\theta}_{n,x_0})_n \) are equal to \(\theta^* \) up to a permutation of indices.
Non-homogeneous MS-AR models: MLEs are consistent

- Theoretical framework flexible enough to include models with exogenous covariates
- For example non-homogeneous HMMs used for statistical downscaling

\[\text{Covariates} \quad \cdots \rightarrow Z_{k-1} \rightarrow Z_k \rightarrow Z_{k+1} \rightarrow \cdots \]
\[\text{Hidden Regime} \quad \cdots \rightarrow X_{k-1} \rightarrow X_k \rightarrow X_{k+1} \rightarrow \cdots \]
\[\text{Output time series} \quad \cdots \rightarrow R_{k-1} \rightarrow R_k \rightarrow R_{k+1} \rightarrow \cdots \]

- **Covariates** = large scale information
 - Assumed to be an ergodic Markov process
- **Output time series** = local weather conditions
 - (rainfall, temperature, ...) at a meteorological station
Conclusions

- Weather type models provide a flexible and interpretable family of models for meteorological time series
- Models have been developed/validated for generating
 - (rainfall, temperature, solar radiation, humidity, wind speed) simultaneously at a single location
 - Wind speed, wind direction, temperature independently at a single location
 - Rainfall at several locations simultaneously
- More works needed for
 - Developing multi-site and multi-parameters generators
 - Improving some aspects of existing models
 - Interannual variability underestimated ("overdispersion" phenomenon)
 - Probability of long "events" (dry spell, heat wave,...) generally underestimated
- R package under development
- References