1. CCR activities

Introduction

- CCR (Caisse Centrale de Réassurance) is a reinsurance company 100% owned by the French State.

- CCR has market reinsurance activities but its first aim is to provide unlimited state-guaranteed coverage for branches specific to the French market such as natural disasters or terrorism.
1. CCR activities

Compensation scheme for natural disasters

- All compensations under the Law of 1982 have to satisfy two conditions:
 - A natural disaster must be recognized by an interministerial commission.
 - The property affected must be covered by a “property damage” insurance policy.

- Perils covered by the scheme are not explicitly named. Therefore the following list is not exhaustive:
 - Flood (heavy rain flood, river overflow, ground-water flood, seasurge)
 - Earthquake
 - Ground movement (including subsidence due to drought)
 - Avalanche
 - Cyclonic winds in French overseas departments and territories.
1. CCR activities

Damages due to natural disasters

- Flood is the most expensive hazard since the beginning of the Nat Cat scheme: 55% over the 1990-2010 period.

- 2010 was the most expensive year for flood with two main events: Xynthia seasurge and floods in South East of France.

- 2003 drought is the most expensive event since scheme creation: more than 1 billion €.

- There is a risk for important non-yet occurred events:
 - Flood in Paris (more than 10 billion euros).
 - Earthquake in south east of France (several billion euros)
1. CCR activities

Modeling at CCR

- For about ten years, CCR has developed natural disaster models to analyze the exposition of French territories.

- To achieve this work, CCR:
 - collects data on hazards, insured portfolios and damages;
 - develops its own models for the main perils: floods and drought;
 - uses and adapts editor models for other perils with potentially extremes losses: earthquake and hurricanes.

- These tools allow CCR to:
 - estimate the cost of a major event a few days (or few weeks for drought) after its occurrence: this approach is called “deterministic”;
 - measure the exposition for the insurance market, for CCR and for the French State: this approach is called “probabilistic”.

Modeling Stochastic Event Set to Measure the Financial Exposure to Natural Disasters in France
1. CCR activities

General description of the flood model

Input Data
- Rain, ETP (Météo France)
- DTM (IGN, 50 m)
- BD Carthage (MEDDTL)
- Land use (Corine Land Cover)
- Cedant exposure portfolio

HAZARD MODEL
- Rainfall
- River flood
- Pluvial flood

EXPOSURE MODEL
- Insured risks
 - Adress
 - Risk types
 - Insured values

VULNERABILITY MODEL
- Insured values
- Destruction ratio in case of claim
- Claim probability
- Nat Cat recognition probability

COST
- Per risk
- Per zipcode
- Per event

Modeling Stochastic Event Set to Measure the Financial Exposure to Natural Disasters in France
1. CCR activities

Example of flood deterministic model

Center-East of France (November 2008)

Risk database is not exhaustive and must be extrapolated to the insurance market.

Legend
- Blue: Simulated river overflow
- Orange: Simulated surface water flood zone
- Star: Risks geocoded at address level
1. CCR activities

Probabilistic approach

- Why a probabilistic approach?
 - Pricing.
 - Knowledge of hazards.
 - Financial exposure: CCR and French State.
 - Insurance provision.

- Description of probabilistic approach:

```
Historical dataset → Event generator → Event Set
| Event 1 | Event 2 | Event 3 | ... | Event N |
```

→ Hazard and Damage model → Cost 1 → Cost 2 → Cost 3 → Cost N
2. Weather event generator

Generating precipitations with Copula theory

- A precipitation event is NxM precipitation data where:
 - N is the number of dates
 - M is the number of locations

<table>
<thead>
<tr>
<th>Locations</th>
<th>Dates</th>
<th>Precipitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>p1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>p2</td>
</tr>
<tr>
<td>...</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>pNM</td>
</tr>
</tbody>
</table>

Individuals are not locations or dates. They are combination of both.
2. Weather event generator

Generating precipitations with Copula theory

- A Copula is a cumulative distribution function on the unit cube with uniform marginals.

- Copula theory allows us to model separately:
 - The individual behavior by fitting probability distribution for each component of the random vector.
 - The dependency between marginal variables with the correlation matrix (because we use Gaussian Copulas).

- We use a historical dataset to compute the correlation matrix and to fit the probability distribution.
2. Weather event generator

Steps to generate a NM random vector of precipitations

● 1 – Study marginals and dependence:
 - Fit a probability distribution for each of the NM variables.
 - Calculate the correlation matrix (NM x NM).

● 2 – Randomly draw a vector $U = (u_1, \ldots, u_{NM})$ from a Gaussian copula with the correlation matrix as parameter.

● 3 – Inverse every component of U with the cumulative distribution function associated to each random variable.
2. Weather event generator

An example with two weather stations

- X : { Brest weather station, first week of June}
- Y : { Nantes weather station, first week of June}
- Here we have : N = 1 ; M = 2 and 50 observed data.

Scatter plot of X and Y
Linear correlation : 0.75

Histogram and GEV distribution fitted to for X and Y
2. Weather event generator

An example with two weather stations

Illustrations of a 2-dimension Gaussian copula (correlation = 0.75)
2. Weather event generator

An example with two weather stations

- We use the inverse transform method for each component of the 1000 realizations to obtain precipitation values.

- Drawbacks of this method:
 - Using a Gaussian copula is an important assumption which is difficult to validate.
 - The highest values are uncorrelated with a Gaussian copula.
 - NxM can be quickly very high and our historical dataset can be too small.
2. Weather event generator

What do we call drought?

- In the French compensation scheme for natural disasters, the subsidence due to shrink-swell clay is called «drought».

- This phenomenon damages houses.

- It is a consequence of two factors:
 - Clay presence in the soil;
 - Soil wetness.

- The first factor is constant. So we will modelize only the second one.
2. Weather event generator

Soil Wetness Index Generation

- **Variable to generate:**
 Soil Wetness Index (SWI).

- **Locations of observations:**
 8 981 cells from a 8 x 8 km grid (SAFRAN grid).

- **Dates of observations:**
 10 days periods (3 observations per month).

The SWI is a parameter of the SAFRAN-ISBA-MODCOU suite from Météo France used by an interministerial commission to evaluate a drought event.
2. Weather event generator

Soil Wetness Index Generation

- The soil wetness index seems to be a periodic phenomenon. Example: 6 years of SWI for a grid cell located in Roscoff.

- Correlation is high for 2 nearby cells.
- Autocorrelation is significant for each cell.
- There are enough observations and enough cells to compute the SWI variogram.
- First the SWI is generated on a selection of cells (for example 1 out of 5) and then it is interpolated on the others.
2. Weather event generator

SWI generation – Algorithm (1/2)

1 – Decomposition of marginal process:

- Estimate and remove the linear trend and the seasonality.
- Fit autoregressive model to remove the autocorrelation and fit a probability distribution to the residual process.

The residual process has no more autocorrelation for $t>0$ but it is correlated to the residual process of other cells.
2. Weather event generator

SWI generation – Algorithm (2/2)

● 2 – Variographic analysis
 ◆ Estimate the empirical variogram of the SWI
 ◆ Fit an exponential variogram model to this empirical variogram.

● 3 – Compute the correlation matrix M of the residual process

● 4 – Generate SWI on the selected cells.
 ◆ Generate the residual process on all cells with the copula method
 ◆ Use time series parameters to rebuild marginals one by one.

● 5 – Interpolate the generated SWI on the other cells (kriging).
3. Damage and exposure

Flood modeling

● Building a probabilistic model requires the creation of a stochastic event set of non-occurred but realistic events. Two solutions have been chosen for flood:
 ❖ Distribution of fictive river flow:
 ✓ SCHAPI river flow database (Banque Hydro)
 ✓ Statistical approach

 ❖ Distribution of fictive rainfall events:
 ✓ Météo France SAFRAN rainfall database: 52 years of hourly precipitation on a 8 x 8 km grid for the entire metropolitan territory.
 ✓ Collaboration between CCR and IRSTEA (Etienne Leblois – IRSTEA Lyon) for the development of a rainfall generator.
3. Damage and exposure

Flood modeling: Fictive rainfall events

- A million years of 72 hour rainfalls was simulated for France.
- Example: 1 random fictive year / 1,000,000

Annual rainfall

<table>
<thead>
<tr>
<th>mm x m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 - 5000</td>
</tr>
<tr>
<td>5000 - 15000</td>
</tr>
<tr>
<td>15000 - 20000</td>
</tr>
<tr>
<td>20000 - 25000</td>
</tr>
<tr>
<td>25000 - 45000</td>
</tr>
</tbody>
</table>

Insurance losses

<table>
<thead>
<tr>
<th>Millions €</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
</tr>
<tr>
<td>5 - 20</td>
</tr>
<tr>
<td>20 - 40</td>
</tr>
<tr>
<td>40 - 70</td>
</tr>
<tr>
<td>70 - 130</td>
</tr>
</tbody>
</table>
3. Damage and exposure

Flood modeling: damage validation

Event in Var in June 2010:
- 396 mm observed in 72h
- Event cost: ~505 M€

3 fictive events: 310 to 562 M€ for the same amount of precipitations.

Event in Finistère in December 2000:
- 94 mm observed in 72h
- Event cost: 67 M€

5 fictive events: 44 to 60 M€ for the same amount of precipitations.
3. Damage and exposure

Flood modeling: France exposure to river overflow

Probabilistic map for river flood risk

Official flood zone map

Hazard Return Period
- 1 – 5 years
- 16 – 42 years
- 43 – 83 years
- 84 – 125 years
- 125 – 250 years

Atlas des zones inondables (MEDDTL)
- Flood zones
- Department boundaries

Sources:
- MEDDTL
- Flood carto, CHER
Probabilistic map for river flood risk

On a 50 x 50 m grid

Courbe intensité / fréquence

Fréquence annuelle

Hauteur d’eau (cm)

Communes

Période de retour

> 500 ans
> 200 ans
> 100 ans
> 50 ans
> 20 ans

Modeling Stochastic Event Set to Measure the Financial Exposure to Natural Disasters in France
3. Damage and exposure

Flood modeling: river overflow VS rainfall generation

- CCR flood model simulates the two main kinds of hazard: river and pluvial floods. There are both taken into account for damage modeling.

- Work is in progress for seasurge modeling.
3. Damage and exposure

Flood modeling : Hazard mapping validation

Modeling Stochastic Event Set to Measure the Financial Exposure to Natural Disasters in France
3. Damage and exposure

Flood modeling: limits of probabilistic approach

- The stochastic event set is not representative enough to show an exhaustive vision of flood in France.
- The historical depth of the river flow and rainfall data is limited: the use of historical data could correct this limit.
- CCR is still expecting a complete database of flood defenses.
- Seasurge exposition is not yet taken into account in the event set.
- Some data could be more accurate (DTM for example).
- There are uncertainties about:
 - fits (probability distributions, copulas);
 - correlation of extrem events.
3. Damage and exposure

- Annual losses estimation for the insurance market requires to create an Aggregate Exceedance Probability Curve.
- This curve gives us the probability (or the return period) to exceed an annual loss.

Distribution of probable annual losses for river and pluvial floods.
3. Damage and exposure

This model contributes:

- To analyze the financial exposition to natural disasters in France, for the State, CCR and its clients.
- To estimate the 200-year annual lost exposure for Solvency 2 requirements.
- To cost/benefit analysis and preliminary studies for preventive actions.
Thank you for your attention

CCR™ 100% Reinsurer