FAST PITCH MODELLING FOR CS-ACELP CODER USING FERMAT NUMBER TRANSFORMS

G. Madre†‡, E. H. Baghsious§, S. Azou† and G. Burel§

†Laboratoire d’Electronique et Systèmes de Télécommunications - UMR CNRS 6165
6, avenue Le Gorgeu - BP 809 - 29285 BREST cedex - FRANCE
{madre, baghsious}@univ-brest.fr

Abstract

This paper presents a double improvements to reduce the speech coding complexity of the pitch prediction in a Code-Excited Linear Prediction (CELP) coder. First, the pitch analysis structure is modified. A new fast Pitch Modelling by linear-Filtering (PMF) procedure will determine the adaptive and stochastic codebook contributions of the excitation signal. Afterwards, an efficient implementation of the PMF – CELP coding is proposed by using Number Theoretic Transforms which can significantly reduce the algorithm computation complexity.

1. Introduction

Most modern speech coding techniques are based on the Code-Excited Linear Prediction (CELP) paradigm due to its simplicity and high performances. This technique codes the speech signal with a Linear Prediction analysis and a pitch modelling. These analysis operations determine an excitation which is used to synthesize the speech signal [1].

According to the voiced and unvoiced speech features, we propose a new Pitch Modelling procedure using linear-Filtering (PMF), which splits the excitation signal up into predictable and unpredictable frames, to reduce the transmission rate and the computation time of the pitch analysis which represents a significant part of the coder complexity. In a second stage, the PMF – CELP coding has been developed and implemented in fixed-point arithmetic with Number Theoretic Transforms (NTT), which offer many advantages over the Discrete Fourier Transforms [2] :

- Few or no multiplications are required
- Use of floating point complex numbers is removed and error-free computations are allowed
- Computations are executed on a finite ring of integers, which allows an efficient implementation into DSP

Hence, the use of Number Theoretic Transforms will reduce the delay features, by minimizing the computation complexity. The case of Fermat Number Transforms (FNT), with arithmetic carried out modulo a Fermat number, is particularly suited for digital convolution computations.

To illustrate the real benefits of an FNT-based implementation, the PMF procedure has been tested through numerical simulations of the G.729 coder. The G.729 recommendation of the International Telecommunication Union (ITU) standardizes the 8kbps/s Conjugate Structure - Algebraic CELP speech coding, which is targeted for digital simultaneous voice and data applications [3] [4].

The rest of the paper is organized as follows. Section 2 introduces the CS – ACELP G.729 coder and focuses on the pitch prediction. In a third part, the new PMF procedure, adapted to the constraints of the G.729 norm, is presented. Section 4 presents the concept of the Number Theoretic Transform and details the Fermat Number Transform, which will be implemented into the PMF – CELP coding. In the final part, the synthesized speech quality is evaluated and the benefits of the proposed FNT-based implementation are revealed through the G.729 coder.

2. G.729 Pitch Prediction

The coder operates on speech frames of 10ms, which correspond to 80 samples at a sampling rate of 8kHz [3]. The speech signal is analyzed every frame to extract the 10th order Linear Prediction (LP) filter coefficients, which are converted to Line Spectral Frequencies and quantized. Afterwards, the excitation parameters (pitch delay, adaptive and fixed codebook index and gains) are estimated on a 40-samples (5ms) subframe basis.

!Figure 2.1 : Principal blocks of the G.729 coder

The speech signal is approximated by an excitation signal processed by the synthesis filter [5]. The optimal excitation us is then constructed, for each subframe, as a linear combination of an adaptive and fixed codebooks contribution {r,c}, which model the predictable and stochastic parts of the excitation respectively (figure 2.2) :

\[u(n) = \beta r(n) + Gc(n) \] (1)

where \(n = 0, ..., N - 1 \), \(N \) is the subframe length and \(\beta, G \) the gain factors of both codebook contributions.

In the G.729 coder, the voiced components are selected from the adaptive codebook, which contains the past excitation, with a pitch analysis using a two-stages procedure. An open-loop pitch search estimates an interval of pitch values in which a closed-loop pitch analysis selects the optimal adaptive codebook contribution v.
3. PMF-CELP Coding

According to the voiced and unvoiced speech features, the codebook contributions are more or less significant [1]. However, the CELP coders do not proceed differently to code the excitation parameters. The following new Pitch Modelling by linear-Filtering divides basically the speech frames coding as the excitation is predictable or unpredictable. The PMF – CELP coding, which will replace the G.729 pitch modelling, evaluates as well as possible the contribution of both codebooks with a lower computation time and allows to reduce the transmission rate.

The PMF procedure is based on waveform comparisons using the input speech \(s^a \) and the residual signal \(s^r \) of the LP analysis for the \(k^{th} \) subframe. To extract the excitation parameters, the algorithm chooses between a periodic or an aperiodic coding, by computing two sub-band filterings, belonging to the frequency band voice \([0, 4000]\) Hz. Their impulse response are denoted \(h_{pb} \) and \(h_{ab} \) (figure 3.1).

![Figure 3.1 : Impulse Responses \(h_{pb} \) (a) and \(h_{ab} \) (b)](image)

The PMF – CELP coding, composed of a periodic and aperiodic coding and of a stochastic codebook search, is detailed by the flowchart in figure 3.2.

3.1. Periodic Coding

In this part of the PMF – CELP coding, a closed-loop pitch analysis is used. The optimal waveform \(v \) is selected by maximizing the correlation \(R_a \) of the perceptually weighted signal \(s_w \) with the adaptive codebook components \(D \):

\[
R_a(p) = \sum_{n=0}^{N-1} s_w(n) D(n - p_a) \tag{2}
\]

where \(p_a = 20, ..., 4N - 1 \) and \(N \) is the subframe length equal to 40 samples. The vector \(D \) is constituted of 140 samples of past reconstructed excitations and \(N \) samples of the residual signal, resulting from the LP analysis, which complete the current subframe excitation necessary for the pitch values \(p_a \) inferior to the subframe length.

![Figure 3.2 : Flowchart of the PMF-CELP coding](image)

3.1.1. PMF-Adaptive Codebook Search

To proceed a more efficient adaptive codebook search, the PMF procedure does not use an open-loop pitch search which limits the closed-loop analysis to a part of the adaptive codebook. However, to optimize the estimation of \(v \), we propose to split the codebook \(D \) up into three 2N-samples vectors: \(d_k(n) = D(n - Nk - 19) \) with \(n = 0, ..., 2N - 1 \) and \(k = \{1, 2, 3\} \). The correlation \(R_k \) will be computed only if the vector \(d_k \) contains a part of the past excitation estimated with the periodic coding:

\[
R_d(Nk + 19 - p_d) = \sum_{n=0}^{N-1} s_w(n) d_k(n + p_d) \tag{3}
\]

where \(p_d = 0, ..., N - 1 \). The integer value \(p_d^{opt} \), which maximizes the correlation \(R_d \), allows to extract the adaptive codebook contribution \(v(n) = D(n - Nk - 19 + p_d^{opt}) \) with \(n = 0, ..., N - 1 \).

3.1.2. Fractional Pitch Values

To take into account a pitch period which will be not a multiple of the sampled frequency \(f_s \) is not an integer, this part presents an adaptive codebook search with fractional pitch values used in the PMF – CELP coding.

To achieve a better pitch estimation, the PMF procedure can introduce higher resolution delays, as the G.729 coder, by determining a fractional pitch of 3 resolution. The adaptive codebook contribution is optimized, with a fractional delay \(p_f = \{ -\frac{1}{3}, 0, \frac{1}{3} \} \), by interpolating the previous waveform \(v \) selected with integer pitch values.

![Figure 3.3 : Impulse Response of Interpolation Filter](image)

The vector \(v \) is filtered through an interpolation filter, whose the impulse response \(h_{ip} \) is based on \(\text{sinc}(x) \) function, to determine three waveforms \(w_j \) with \(j = \{0, 1, 2\} \). The new optimal waveform \(v \) is then selected, by minimizing the quadratic error \(E_j = \sum_{n=0}^{N-1} (s_w(n) - w_j(n))^2 \), and its associated gain factor \(\beta \) is estimated.
3.2. Fixed Codebook Contribution

The fixed codebook contribution is selected with the G.729 method [3]. The computation of the pulses sequence c will not be detailed because no modifications have been made. The excitation code vector, composed of non-zero pulses with sign ±1, is generated by searching four pulses positions in an algebraic codebook.

\[c(n) = \left(\sum_{j=0}^{3} \delta_n \delta_{n,m_j} \right) \otimes h_w \]

where \(n = 0, ..., N - 1 \), \(\delta_n \) denotes the Kronecker delta, \(\delta \) the gains of each pulse, \(h_w \) the impulse response of the perceptually weighting filter and the operator \(\otimes \) the convolution. After the selection of the optimal waveform \(c \), its gain factor \(G \) is estimated.

A slight improvement in the voiced sounds quality may be obtained by processing a filtering of the current excitation. As the adaptive codebook contribution is generally more energetic than the fixed codebook components, a low-pass filter can be introduced to attenuate the higher frequencies and increase the pitch prediction.

3.3. Aperiodic Coding

When the speech signal contains only an unvoiced signal or a background noise, it is preferable to eliminate the adaptive codebook contribution to the excitation. It is more efficient to select a white-noise sequence to excite the synthesis filter. The excitation signal can be determined as:

\[u = \beta (nx \otimes h_w) \]

with \(x \) a gaussian white noise sequence and \(n \) its appropriate gain. However, the fixed codebook contribution will be conserve to adjust at best the unquestionable excitation frame. The excitation is then constructed as:

\[u = \beta (nx_p \otimes h_w) + Gc \]

where the vector \(x_p(n) = x(n) \left(1 - \sum_{j=0}^{3} \delta_n \delta_{n,m_j} \right) \) with \(n = 0, ..., N - 1 \) and \(m_j \) the four positions determined in the fixed codebook contribution computation.

4. Number Theoretic Transform

To develop the previous PMF procedure and the ITU G.729 codec in fixed-point arithmetic with a low computational complexity, we propose to implement the different algorithms by using Number Theoretic Transforms (NTT) which will replace Discrete Fourier Transforms (DFT) in the different convolution computations.

4.1. Definitions

A Number Theoretic Transform [2] presents the same form as a DFT but is defined over finite rings. All arithmetic must be carried out modulo \(M \), which may be equal to a prime number or to a multiple of primes, since an NTT is defined over the Galois Field GF(\(M \)). An NTT of a discrete time signal \(x \) and its inverse are given respectively by:

\[X(k) = \left(\sum_{n=0}^{N-1} x(n) \alpha^{nk} \right)_M \]

\[x(n) = \left(\sum_{k=0}^{N-1} X(k) \alpha^{-nk} \right)_M \]

where \(n, k = 0, ..., N - 1 \).

The DFT \(N \)th root of the unit in \(C, e^{2\pi i/N} \), is replaced by the \(N \)th root of the unit over GF(\(M \)) represented by the generating term \(\alpha \), which satisfies the equality \((\alpha^N = 1)_M \)

where \(N \) is the length of the transform and \((\cdot)_M \) denotes the modulo \(M \) operation.

Note that an NTT has similar properties as the DFT such as the periodicity, symmetry or shift properties. Moreover, an NTT admits the Cyclic Convolution Property [6] [7]:

\[U \otimes V = T^{-1} \{ T(U) \bullet T(V) \} \]

where \(U \) and \(V \) represent both sequences to be convoluted, \(T \) and \(T^{-1} \) are the forward and inverse NTT respectively. The operator \(\bullet \) denotes the term by term multiplication.

4.2. Fermat Number Transform

The particular modulo equal to a Fermat number, \(F_t = 2^{2^t} + 1 \) with \(t \in \mathbb{N} \), involves the highly composite transform lengths \(N \) and the values of \(\alpha \) can be equal to a power of 2, hence allowing the replacement of multiplications by bit shifts. The parameters values of a Fermat Number Transform (FNT), defined over GF(\(F_t \)), are given by \(N = 2^{t+1}-1 \) and \(\alpha = 2^{2^t} \) with \(t < N \) (Table I).

\(t \)	Possible Combinations of FNT Parameters			
\(t \)	\(F_t \)	\(\alpha = 2^2 \)	\(\alpha = 2^4 \)	\(\alpha = \sqrt{2} \)
2	3	8 \(\times \) 4	16	
3	17	16 \(\times \) 8	32	
4	257	32 \(\times \) 16	64	
5	65537	64 \(\times \) 32	128	
6	4294967295	128 \(\times \) 64	256	

Note that a FNT computation needs about \(N \log_2 N \) simple operations (bit shifts, additions) but no multiplication, while a DFT requires in order \(N \log_2 N \) multiplications.

Moreover, a fast FNT-type computational structure (FFNT) similar to the Fast Fourier Transform exists. Then, available FFT VLSI hardware structure for real-time implementation of the FFNT may be adopted. Some tests have shown that a FFNT-based convolution reduces the computation time by a factor of 3 to 5 compared to the FFT implementation [8].

5. Numerical Results

Numerical simulations have been conducted to evaluate the performances of the proposed PMF procedure implemented with FNT through the ITU G.729 coder [3]. In these tests, the G.729 pitch modelling is compared to the PMF – CELP coding into Matlab software. Both methods are evaluated, for the same sentence (figure 5.1), by computing objective measures such as the pitch prediction gain or the spectral distortion.

5.1. Performances Comparisons

In figure 5.2, the plots represent the pitch prediction gain \(G_{LT} \) obtained with both pitch modelling procedures.

\[G_{LT} = 10 \log_{10} \left(\frac{\sum_{n=0}^{N-1} s_k^2(n)}{\sum_{n=0}^{N-1} (s_k(n) - \hat{s}_k(n))^2} \right) \]

where \(s_k \) and \(\hat{s}_k \) are the \(k \)th subframe of the input and synthesized speech signals respectively.
Although the recent DSPs become more and more powerful, the multiplications remain more complicated than basic operations. Hence, to evaluate the different procedures computational cost, the number of multiplications will be particularly considered.

Note that the computation gain is more significant for the filtering and correlation process. Comparing to the DFT implementation, the proposed FNT-based PMF – CELP coding involves a significantly reduction of the multiplications number, by a factor higher than 6 for each frame.

6. Conclusion

In this paper, an efficient implementation of a pitch modelling for a Code-Excited Linear Prediction coder is proposed. A design of a new Pitch Modelling by linear Filtering, which differentiates the voiced and unvoiced speech frames coding, has been presented. The robust PMF procedure reduces the transmission rate and the coding complexity of the speech coder. Following stage would be to decrease the computation time of the fixed codebook search [9].

Objective and recent subjective evaluations of the PMF – CELP coding through CS – ACELP G.729 coder reveals an interesting quality of the reconstructed speech signal. Although the selected application is the ITU G.729 coder, our PMF procedure can be adapted to other CELP-type coder.

Moreover, an implementation using Format Number Transforms, which reduce the computational cost of the convolution computations, involves the PMF – CELP computation complexity is considerably reduced. Note that the FNT-based implementation could be beneficial to other functions of speech coders [10].

7. References